‘Dose Creep in Action’: Contemporary Insight into the UK Radiology Environment

Chris Hayre
Lecturer in Diagnostic Radiography
University of Suffolk
c.hayre@ucs.ac.uk
Declaration of Conflict of Interest

Faculty 2015 Joint Congress

Disclosure Statement
Faculty and organizing committee members who have a financial relationship with or are affiliated with companies or organizations about whose products or services they are reporting must disclose this information. If you, as a member of the organizing group, or as a faculty member, have such an affiliation or financial relationship, a disclosure statement must be made available to the audience. The intent of this policy is not to prevent an individual from participating in the event's proceedings. The intent of this policy is to prevent an individual from participating in the event's proceedings. It is intended that any relationship should be identified openly so that participants may form their own judgments about the event with the full disclosure of facts.

I have or had an affiliation with a pharmaceutical, medical device, or communications organization within the past two years. []

I will discuss or disclose in my presentation at the meeting investigational or unapproved "off-label" use of a medical device, product, or pharmaceutical that has not been approved for such purpose by Health Canada or the FDA. []

I will discuss or disclose "off-label" products, you are responsible for disclosing this information to the audience at the beginning of your presentation.

A. Disclosures
Select applicable disclosure statement and complete requested information. If none of the sample disclosure statements apply to your situation, please select (I decline to enter your statement and complete requested information).

Disclosure Statement	Affiliated Company or Organization	Nature of the Relationship
[] I am a member of an advisory board or equivalent with a commercial organization.
[] I am a member of a speakers' bureau.
[] I have received payment from a commercial organization, including gifts or other consideration in kind.
[] I have received grants or honoraria from a commercial organization.
[] I hold a patent for a product relevant to the CME/CPR program or that is marketed by a commercial organization.
[] I hold investments in a pharmaceutical or communications firm.

C. Acknowledgement

First Name	Middle Name	Last Name
Christopher | Mavricole | Haynes

Signature: [signature required] Date: [date]

B. Disclosure of Investigational Use or "Off-Label" Use of Medical Devices, Products, or Pharmaceuticals (for Faculty only)

We recognize that at scientific meetings faculty may discuss the investigational or unapproved "off-label" use of a medical device, product, or pharmaceutical that has not been approved for such purpose by Health Canada or the FDA.

I will [] I will not [] discuss or disclose in my presentation at the meeting investigational or unapproved "off-label" use of a medical device, product, or pharmaceutical that is classified by Health Canada as investigational for the intended use.

If you will discuss or describe "off-label" products, you are responsible for disclosing this information to the audience at the beginning of your presentation.

Declaration of Conflict of Interest

A declaration is mandatory per the Royal College of Physicians and Surgeons of Canada (RCPSC) because a conflict of interest may occur in situations where the personal and professional interests of individuals may have actual, potential, or apparent influence over their judgment and actions.

Examples of relationships that must be disclosed include but are not limited to the following:
- Any direct financial interest in a commercial entity such as pharmaceutical organization, medical devices company, or communications firm ("the organization")
- Investments held in the organization
- Membership on the organization's advisory board or similar committee
- Current or recent participation in the clinical trial sponsored by the organization
- Member of a speakers' bureau
- Holding a patent for a product referred to in the CME/CPR activity or that is marketed by a commercial organization

Declaration of Conflict of Interest
Introduction

- Rationale
- Literature
- The Study
- Findings
- Conclusion
Rationale

- General radiography (combined with fluoroscopy) constitutes to approximately 90% of all radiological examinations undertaken (Health Protection Agency, 2011).

- ICRP principles justification, optimisation and dose limits (ICRP, 2012).

- UK legislation ensuring ionising radiation is kept ‘as low as reasonably practicable’ (ALARP) (IR(ME)R, 2000).

- Imaging technology in radiology regarded as one of the ‘most expanding specialties’ in recent years (NHS, 2013:1).

- Without appropriate research and education digital radiography has the potential to increase radiation doses (ICRP, 2005a).
Literature

- Digital radiography (DR) ‘may result in fewer retakes and a low X-ray dose for your patients’ (Philips DR Brochure, 2011:3).

- Dose reduction to chest and skeletal examinations up to 33-80% (Völk et al, 2000; Strotzer et al, 2002; Manning-Stanley et al, 2012; Mai et al, 2013).

- Transitional process from film screen (FS) to digital could increase patient doses by up to 40-103% as DR systems may auto-correct exposures up to 500% (McConnell, 2011).

- ‘Exposure creep’ or ‘dose creep’: Operators favouring excellent image quality thus a higher exposure than normal is selected (Seeram, et al, 2013).

• Harry Braverman (1974:319)

‘The more machinery that has been developed as an aid to labour, the more labour becomes a servant of machinery’.
Gap in literature

Radiography Observed: An Ethnographic Study Exploring Contemporary Radiographic Practice.
The Study

• PhD study undertaken in the UK

• Four research sites (National Health Service)

• Explored the use of digital radiography in contemporary practices

• Ethnography: The selected methodology
 – Provided close engagement with radiographers.
 – Participant observation, semi-structured interviews and X-ray experimentation.
 – Examined the culture, uncovered attitudes and feelings of radiographers within the digital radiography environment.
Findings – Exposure factors

• “A health care professional who is entitled in accordance with the employer’s procedures to take responsibility for an individual medical exposure”.
 (IR(ME)R, 2000:2)

Autonomy with exposure factors:

“I try to keep the mAs down as much as I can really... I feel that you can bring the kV up a bit, take a bit of the mAs off with DR.”
 (Band 6 Radiographer)

“But with DR, it’s so sensitive that you would tend to alter the kV more than the mAs.”
 (Band 5 Radiographer)
Findings – Exposure factors

Lack of autonomy with exposure factors:

“So I was told just to use the pre-set, and not actually fiddle with it.”

(Band 5 Radiographer)

“So far I haven’t actually adjusted any exposure factors, because compared to CR they’re pretty low on exposure. So I think it’s a good... I think they’re pretty accurate, because I haven’t had any problems with them.”

(Band 6 Radiographer)
Findings – ‘Cropping’ Collimation

• Strict collimation enhances radiographic contrast (Jeffery, 1997)

• Demonstrated to reduce dose to irradiated area and scatter to radiosensitive organs (Carlton and Adler, 2013; Hayre, 2014)

Radiographers felt that cropping ‘did not benefit the patient’.

(Band 7 Radiographer)

Important to practice ‘proper collimation’.

(Band 5 Radiographer)

Cropping is ‘down to poor practice’.

(Band 6 Radiographer)

Yet........

• ‘Collimation may be inefficient’ (Titley and Cosson, 2013:5).... Why??
Findings – ‘Cropping’ Collimation

“When you’re doing something on CR, you do think suddenly “Ooh, I better not open it out too wide because I can’t collimate on the CR and whatever I take is going to go through.” Whereas you don’t think that when you’re on DR - the thought’s not there.”

(Band 5 Radiographer)

“You tend to leave it a little bit wide and you think “Oh, I’ll just crop it afterwards.” Which is not great - you know it’s more radiation.”

(Band 6 Radiographer)

“You become a bit relaxed about your collimation - you just sort of think, “Oh, I’ll crop it”.

(Band 6 Radiographer)
Source to Image Distance

Observation:

Variation in SID apparent throughout radiological examinations when X-ray tube was not required to be ‘locked into position’. As a result the SID varied amongst X-ray operators with distances varying between 77cm to 120cm for extremity radiography.

This suggested that operators may not apply strict SID rules during certain radiographic examinations within the clinical environment.
SID and Collimation

DP Hand – SID and Collimation effect on DAP

An increase in collimation significantly \((p < 0.001)\) increased the DAP to the anthropomorphic phantom.

An increase in SID significantly reduces the DAP \((p < 0.001)\)

<table>
<thead>
<tr>
<th>SID (cm)</th>
<th>Dose Area Product dGy/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 cm</td>
<td>0.204</td>
</tr>
<tr>
<td>85 cm</td>
<td>0.179</td>
</tr>
<tr>
<td>90 cm</td>
<td>0.165</td>
</tr>
<tr>
<td>95 cm</td>
<td>0.142</td>
</tr>
<tr>
<td>100 cm</td>
<td>0.131</td>
</tr>
<tr>
<td>105 cm</td>
<td>0.121</td>
</tr>
<tr>
<td>110 cm</td>
<td>0.108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FS 19 x 17</th>
<th>FS 25 x 23</th>
<th>FS 33 x 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.342</td>
<td>0.375</td>
<td>0.612</td>
</tr>
<tr>
<td>0.322</td>
<td>0.342</td>
<td>0.546</td>
</tr>
<tr>
<td>0.272</td>
<td>0.301</td>
<td>0.484</td>
</tr>
<tr>
<td>0.222</td>
<td>0.242</td>
<td>0.389</td>
</tr>
<tr>
<td>0.202</td>
<td>0.222</td>
<td>0.358</td>
</tr>
<tr>
<td>0.198</td>
<td>0.212</td>
<td>0.322</td>
</tr>
</tbody>
</table>
Conclusions

- Radiographers may require additional mentoring with advancing technology in order to ‘connect theory with practice’.

- ‘Dose creep’ could be multi-faceted in general radiography environments following technological advances.

- Suggests that critical reflection of radiographic techniques is required to ensure that optimum ionising radiation is delivered ‘as low as reasonably practicable’.

- The central tenets of radiographic practice may be becoming increasingly problematic.
Future Research?
References

References

